companydirectorylist.com  全球商业目录和公司目录
搜索业务,公司,产业 :


国家名单
美国公司目录
加拿大企业名单
澳洲商业目录
法国公司名单
意大利公司名单
西班牙公司目录
瑞士商业列表
奥地利公司目录
比利时商业目录
香港公司列表
中国企业名单
台湾公司列表
阿拉伯联合酋长国公司目录


行业目录
美国产业目录












USA-NJ-BUENA 公司名录

企业名单和公司名单:
THE NEW JERSEY TOMATO COUNCIL
公司地址:  PO Box 588 288 Co-op Drive,BUENA,NJ,USA
邮政编码:  8310
电话号码:  6096933988 (+1-609-693-3988)
传真号码:  6097379275 (+1-609-737-9275)
网址:  jerseytomato. com, wenzel-advertising-pr. com
电子邮件:  
美国SIC代码:  731999
美国的SIC目录:  Advertising Nec

STARSTORM ENTERTAINMENT INC.
公司地址:  P O BOX 200,BUENA,NJ,USA
邮政编码:  8310
电话号码:  6095679774 (+1-609-567-9774)
传真号码:  
网址:  allstarfilm. com
电子邮件:  
美国SIC代码:  792217
美国的SIC目录:  Entertainment Producers

STARSTORM ENTERTAINMENT
公司地址:  P O Box 200,BUENA,NJ,USA
邮政编码:  8310
电话号码:  6000000000 (+1-600-000-0000)
传真号码:  
网址:  starstorm. com, starstorm. tv
电子邮件:  
美国SIC代码:  792227
美国的SIC目录:  Entertainers

RS ELECTRIC
公司地址:  ,BUENA,NJ,USA
邮政编码:  8310
电话号码:  6096973310 (+1-609-697-3310)
传真号码:  
网址:  rselectric. com
电子邮件:  
美国SIC代码:  173101
美国的SIC目录:  Electric Contractors

RELIANCE GLASS WORKS
公司地址:  1002 Harding Highway,BUENA,NJ,USA
邮政编码:  8310
电话号码:  7758414124 (+1-775-841-4124)
传真号码:  8005221329 (+1-800-522-1329)
网址:  relianceglass. com, spindustries. com, wilmad-labglass. com, wilmad. com
电子邮件:  
美国SIC代码:  5719
美国的SIC目录:  Glass & mirrors

PREMIER ELECTRICAL CONTRACTORS
公司地址:  PO Box 706,BUENA,NJ,USA
邮政编码:  08310-0706
电话号码:  
传真号码:  8566971777 (+1-856-697-1777)
网址:  
电子邮件:  
美国SIC代码:  173101
美国的SIC目录:  Electric Contractors

GET LOCAL NEW JERSEY
公司地址:  168 Country Lane,BUENA,NJ,USA
邮政编码:  8310
电话号码:  8566979233 (+1-856-697-9233)
传真号码:  
网址:  inatlanticcounty. com, incumberlandcounty. com
电子邮件:  
美国SIC代码:  863101
美国的SIC目录:  Labor Organizations

FIRST IMPRESSIONS BY FRAN
公司地址:  PO Box 459,BUENA,NJ,USA
邮政编码:  08310-0459
电话号码:  
传真号码:  8566912700 (+1-856-691-2700)
网址:  
电子邮件:  
美国SIC代码:  599940
美国的SIC目录:  Wedding Supplies & Services

DICKINSON; HANSBURY CO.;CPAS
公司地址:  118 E Wheat Rd. - P.O. Box 519,BUENA,NJ,USA
邮政编码:  8310
电话号码:  8564829555 (+1-856-482-9555)
传真号码:  8566918160 (+1-856-691-8160)
网址:  dickinson-hansbury. com, glorytabernacle. org, newfieldbaptist. org
电子邮件:  
美国SIC代码:  8661
美国的SIC目录:  Religious organizations

CONNECTIVE COMMUNICATIONS
公司地址:  PO Box 341,BUENA,NJ,USA
邮政编码:  08310-0341
电话号码:  
传真号码:  8566971000 (+1-856-697-1000)
网址:  
电子邮件:  
美国SIC代码:  738962
美国的SIC目录:  Inventory Service

COMPUTER SYSTEM SERVICES
公司地址:  ,BUENA,NJ,USA
邮政编码:  8310
电话号码:  8568538896 (+1-856-853-8896)
传真号码:  
网址:  computersystemservices. com
电子邮件:  
美国SIC代码:  573407
美国的SIC目录:  Computer & Equipment Dealers

COMPUTER MIKES
公司地址:  528 N Harding Highway,BUENA,NJ,USA
邮政编码:  8015
电话号码:  8008609577 (+1-800-860-9577)
传真号码:  
网址:  iluvcheese. com, localbands. net, mestores. com, munsonenterprises. com, mysaggyballs. com, nlwebsites. co
电子邮件:  
美国SIC代码:  737101
美国的SIC目录:  Computer Services

CHRISTOPHER MACEY
公司地址:  645 Main Street,BUENA,NJ,USA
邮政编码:  8270
电话号码:  6093642589 (+1-609-364-2589)
传真号码:  
网址:  foodcookbook. com
电子邮件:  
美国SIC代码:  203204
美国的SIC目录:  Food Specialties

Show 1-13 record,Total 20 record
First Pre [1 2] Next Last  Goto,Total 2 Page










公司新闻:
  • What are the features get from a feature extraction using a CNN?
    So, the convolutional layers reduce the input to get only the more relevant features from the image, and then the fully connected layer classify the image using those features, isn't it? I think I've just understood how a CNN works
  • machine learning - What is a fully convolution network? - Artificial . . .
    Fully convolution networks A fully convolution network (FCN) is a neural network that only performs convolution (and subsampling or upsampling) operations Equivalently, an FCN is a CNN without fully connected layers Convolution neural networks The typical convolution neural network (CNN) is not fully convolutional because it often contains fully connected layers too (which do not perform the
  • convolutional neural networks - When to use Multi-class CNN vs. one . . .
    I'm building an object detection model with convolutional neural networks (CNN) and I started to wonder when should one use either multi-class CNN or a single-class CNN
  • What is the fundamental difference between CNN and RNN?
    CNN vs RNN A CNN will learn to recognize patterns across space while RNN is useful for solving temporal data problems CNNs have become the go-to method for solving any image data challenge while RNN is used for ideal for text and speech analysis In a very general way, a CNN will learn to recognize components of an image (e g , lines, curves, etc ) and then learn to combine these components
  • Extract features with CNN and pass as sequence to RNN
    But if you have separate CNN to extract features, you can extract features for last 5 frames and then pass these features to RNN And then you do CNN part for 6th frame and you pass the features from 2,3,4,5,6 frames to RNN which is better The task I want to do is autonomous driving using sequences of images
  • In a CNN, does each new filter have different weights for each input . . .
    Typically for a CNN architecture, in a single filter as described by your number_of_filters parameter, there is one 2D kernel per input channel There are input_channels * number_of_filters sets of weights, each of which describe a convolution kernel So the diagrams showing one set of weights per input channel for each filter are correct
  • Reduce receptive field size of CNN while keeping its capacity?
    One way to keep the capacity while reducing the receptive field size is to add 1x1 conv layers instead of 3x3 (I did so within the DenseBlocks, there the first layer is a 3x3 conv and now followed by 4 times a 1x1 conv layer instead of the original 3x3 convs (which increase the receptive field)) In doing that, the number of parameters can be kept at a similar level While 1x1 convolutions are
  • When training a CNN, what are the hyperparameters to tune first?
    I am training a convolutional neural network for object detection Apart from the learning rate, what are the other hyperparameters that I should tune? And in what order of importance? Besides, I r
  • What is a cascaded convolutional neural network?
    The paper you are citing is the paper that introduced the cascaded convolution neural network In fact, in this paper, the authors say To realize 3DDFA, we propose to combine two achievements in recent years, namely, Cascaded Regression and the Convolutional Neural Network (CNN) This combination requires the introduction of a new input feature which fulfills the "cascade manner" and




企业名录,公司名录
企业名录,公司名录 copyright ©2005-2012 
disclaimer |iPhone手机游戏讨论 |Android手机游戏讨论 |海外商家点评 |好笑有趣影片图片